\(\int \frac {x \sqrt {1+c^2 x^2}}{(a+b \text {arcsinh}(c x))^2} \, dx\) [413]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 149 \[ \int \frac {x \sqrt {1+c^2 x^2}}{(a+b \text {arcsinh}(c x))^2} \, dx=-\frac {x \left (1+c^2 x^2\right )}{b c (a+b \text {arcsinh}(c x))}+\frac {\cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{4 b^2 c^2}+\frac {3 \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{4 b^2 c^2}-\frac {\sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{4 b^2 c^2}-\frac {3 \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{4 b^2 c^2} \]

[Out]

-x*(c^2*x^2+1)/b/c/(a+b*arcsinh(c*x))+1/4*Chi((a+b*arcsinh(c*x))/b)*cosh(a/b)/b^2/c^2+3/4*Chi(3*(a+b*arcsinh(c
*x))/b)*cosh(3*a/b)/b^2/c^2-1/4*Shi((a+b*arcsinh(c*x))/b)*sinh(a/b)/b^2/c^2-3/4*Shi(3*(a+b*arcsinh(c*x))/b)*si
nh(3*a/b)/b^2/c^2

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {5814, 5774, 3384, 3379, 3382, 5780, 5556} \[ \int \frac {x \sqrt {1+c^2 x^2}}{(a+b \text {arcsinh}(c x))^2} \, dx=\frac {\cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{4 b^2 c^2}+\frac {3 \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{4 b^2 c^2}-\frac {\sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{4 b^2 c^2}-\frac {3 \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{4 b^2 c^2}-\frac {x \left (c^2 x^2+1\right )}{b c (a+b \text {arcsinh}(c x))} \]

[In]

Int[(x*Sqrt[1 + c^2*x^2])/(a + b*ArcSinh[c*x])^2,x]

[Out]

-((x*(1 + c^2*x^2))/(b*c*(a + b*ArcSinh[c*x]))) + (Cosh[a/b]*CoshIntegral[(a + b*ArcSinh[c*x])/b])/(4*b^2*c^2)
 + (3*Cosh[(3*a)/b]*CoshIntegral[(3*(a + b*ArcSinh[c*x]))/b])/(4*b^2*c^2) - (Sinh[a/b]*SinhIntegral[(a + b*Arc
Sinh[c*x])/b])/(4*b^2*c^2) - (3*Sinh[(3*a)/b]*SinhIntegral[(3*(a + b*ArcSinh[c*x]))/b])/(4*b^2*c^2)

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5556

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5774

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cosh[-a/b + x/b], x], x
, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 5780

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/(b*c^(m + 1)), Subst[Int[x^n*Sinh
[-a/b + x/b]^m*Cosh[-a/b + x/b], x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5814

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(f*x)^m*Sqrt[1 + c^2*x^2]*(d + e*x^2)^p*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] + (-Dist[f*(m/(b*c*(
n + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(
n + 1), x], x] - Dist[c*((m + 2*p + 1)/(b*f*(n + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Int[(f*x)^(m + 1)*(
1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d]
&& LtQ[n, -1] && IGtQ[2*p, 0] && NeQ[m + 2*p + 1, 0] && IGtQ[m, -3]

Rubi steps \begin{align*} \text {integral}& = -\frac {x \left (1+c^2 x^2\right )}{b c (a+b \text {arcsinh}(c x))}+\frac {\int \frac {1}{a+b \text {arcsinh}(c x)} \, dx}{b c}+\frac {(3 c) \int \frac {x^2}{a+b \text {arcsinh}(c x)} \, dx}{b} \\ & = -\frac {x \left (1+c^2 x^2\right )}{b c (a+b \text {arcsinh}(c x))}+\frac {\text {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{b^2 c^2}+\frac {3 \text {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}-\frac {x}{b}\right ) \sinh ^2\left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{b^2 c^2} \\ & = -\frac {x \left (1+c^2 x^2\right )}{b c (a+b \text {arcsinh}(c x))}+\frac {3 \text {Subst}\left (\int \left (\frac {\cosh \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{4 x}-\frac {\cosh \left (\frac {a}{b}-\frac {x}{b}\right )}{4 x}\right ) \, dx,x,a+b \text {arcsinh}(c x)\right )}{b^2 c^2}+\frac {\cosh \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{b^2 c^2}-\frac {\sinh \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{b^2 c^2} \\ & = -\frac {x \left (1+c^2 x^2\right )}{b c (a+b \text {arcsinh}(c x))}+\frac {\cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{b^2 c^2}-\frac {\sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{b^2 c^2}+\frac {3 \text {Subst}\left (\int \frac {\cosh \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{4 b^2 c^2}-\frac {3 \text {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{4 b^2 c^2} \\ & = -\frac {x \left (1+c^2 x^2\right )}{b c (a+b \text {arcsinh}(c x))}+\frac {\cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{b^2 c^2}-\frac {\sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{b^2 c^2}-\frac {\left (3 \cosh \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{4 b^2 c^2}+\frac {\left (3 \cosh \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {3 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{4 b^2 c^2}+\frac {\left (3 \sinh \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{4 b^2 c^2}-\frac {\left (3 \sinh \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {3 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{4 b^2 c^2} \\ & = -\frac {x \left (1+c^2 x^2\right )}{b c (a+b \text {arcsinh}(c x))}+\frac {\cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{4 b^2 c^2}+\frac {3 \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{4 b^2 c^2}-\frac {\sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{4 b^2 c^2}-\frac {3 \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{4 b^2 c^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.85 \[ \int \frac {x \sqrt {1+c^2 x^2}}{(a+b \text {arcsinh}(c x))^2} \, dx=-\frac {\frac {4 b c x}{a+b \text {arcsinh}(c x)}+\frac {4 b c^3 x^3}{a+b \text {arcsinh}(c x)}-\cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )-3 \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (3 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )+\sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )+3 \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (3 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )}{4 b^2 c^2} \]

[In]

Integrate[(x*Sqrt[1 + c^2*x^2])/(a + b*ArcSinh[c*x])^2,x]

[Out]

-1/4*((4*b*c*x)/(a + b*ArcSinh[c*x]) + (4*b*c^3*x^3)/(a + b*ArcSinh[c*x]) - Cosh[a/b]*CoshIntegral[a/b + ArcSi
nh[c*x]] - 3*Cosh[(3*a)/b]*CoshIntegral[3*(a/b + ArcSinh[c*x])] + Sinh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]] +
 3*Sinh[(3*a)/b]*SinhIntegral[3*(a/b + ArcSinh[c*x])])/(b^2*c^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(363\) vs. \(2(141)=282\).

Time = 0.29 (sec) , antiderivative size = 364, normalized size of antiderivative = 2.44

method result size
default \(-\frac {4 c^{3} x^{3}-4 c^{2} x^{2} \sqrt {c^{2} x^{2}+1}+3 c x -\sqrt {c^{2} x^{2}+1}}{8 c^{2} b \left (a +b \,\operatorname {arcsinh}\left (c x \right )\right )}-\frac {3 \,{\mathrm e}^{\frac {3 a}{b}} \operatorname {Ei}_{1}\left (3 \,\operatorname {arcsinh}\left (c x \right )+\frac {3 a}{b}\right )}{8 c^{2} b^{2}}-\frac {-\sqrt {c^{2} x^{2}+1}+c x}{8 c^{2} b \left (a +b \,\operatorname {arcsinh}\left (c x \right )\right )}-\frac {{\mathrm e}^{\frac {a}{b}} \operatorname {Ei}_{1}\left (\operatorname {arcsinh}\left (c x \right )+\frac {a}{b}\right )}{8 c^{2} b^{2}}-\frac {\operatorname {arcsinh}\left (c x \right ) \operatorname {Ei}_{1}\left (-\operatorname {arcsinh}\left (c x \right )-\frac {a}{b}\right ) {\mathrm e}^{-\frac {a}{b}} b +\operatorname {Ei}_{1}\left (-\operatorname {arcsinh}\left (c x \right )-\frac {a}{b}\right ) {\mathrm e}^{-\frac {a}{b}} a +b c x +\sqrt {c^{2} x^{2}+1}\, b}{8 c^{2} b^{2} \left (a +b \,\operatorname {arcsinh}\left (c x \right )\right )}-\frac {4 b \,c^{3} x^{3}+4 \sqrt {c^{2} x^{2}+1}\, b \,c^{2} x^{2}+3 \,\operatorname {arcsinh}\left (c x \right ) \operatorname {Ei}_{1}\left (-3 \,\operatorname {arcsinh}\left (c x \right )-\frac {3 a}{b}\right ) {\mathrm e}^{-\frac {3 a}{b}} b +3 \,\operatorname {Ei}_{1}\left (-3 \,\operatorname {arcsinh}\left (c x \right )-\frac {3 a}{b}\right ) {\mathrm e}^{-\frac {3 a}{b}} a +3 b c x +\sqrt {c^{2} x^{2}+1}\, b}{8 c^{2} b^{2} \left (a +b \,\operatorname {arcsinh}\left (c x \right )\right )}\) \(364\)

[In]

int(x*(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x))^2,x,method=_RETURNVERBOSE)

[Out]

-1/8*(4*c^3*x^3-4*c^2*x^2*(c^2*x^2+1)^(1/2)+3*c*x-(c^2*x^2+1)^(1/2))/c^2/b/(a+b*arcsinh(c*x))-3/8/c^2/b^2*exp(
3*a/b)*Ei(1,3*arcsinh(c*x)+3*a/b)-1/8*(-(c^2*x^2+1)^(1/2)+c*x)/c^2/b/(a+b*arcsinh(c*x))-1/8/c^2/b^2*exp(a/b)*E
i(1,arcsinh(c*x)+a/b)-1/8/c^2/b^2*(arcsinh(c*x)*Ei(1,-arcsinh(c*x)-a/b)*exp(-a/b)*b+Ei(1,-arcsinh(c*x)-a/b)*ex
p(-a/b)*a+b*c*x+(c^2*x^2+1)^(1/2)*b)/(a+b*arcsinh(c*x))-1/8/c^2/b^2*(4*b*c^3*x^3+4*(c^2*x^2+1)^(1/2)*b*c^2*x^2
+3*arcsinh(c*x)*Ei(1,-3*arcsinh(c*x)-3*a/b)*exp(-3*a/b)*b+3*Ei(1,-3*arcsinh(c*x)-3*a/b)*exp(-3*a/b)*a+3*b*c*x+
(c^2*x^2+1)^(1/2)*b)/(a+b*arcsinh(c*x))

Fricas [F]

\[ \int \frac {x \sqrt {1+c^2 x^2}}{(a+b \text {arcsinh}(c x))^2} \, dx=\int { \frac {\sqrt {c^{2} x^{2} + 1} x}{{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(x*(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x))^2,x, algorithm="fricas")

[Out]

integral(sqrt(c^2*x^2 + 1)*x/(b^2*arcsinh(c*x)^2 + 2*a*b*arcsinh(c*x) + a^2), x)

Sympy [F]

\[ \int \frac {x \sqrt {1+c^2 x^2}}{(a+b \text {arcsinh}(c x))^2} \, dx=\int \frac {x \sqrt {c^{2} x^{2} + 1}}{\left (a + b \operatorname {asinh}{\left (c x \right )}\right )^{2}}\, dx \]

[In]

integrate(x*(c**2*x**2+1)**(1/2)/(a+b*asinh(c*x))**2,x)

[Out]

Integral(x*sqrt(c**2*x**2 + 1)/(a + b*asinh(c*x))**2, x)

Maxima [F]

\[ \int \frac {x \sqrt {1+c^2 x^2}}{(a+b \text {arcsinh}(c x))^2} \, dx=\int { \frac {\sqrt {c^{2} x^{2} + 1} x}{{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(x*(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x))^2,x, algorithm="maxima")

[Out]

-((c^2*x^3 + x)*(c^2*x^2 + 1) + (c^3*x^4 + c*x^2)*sqrt(c^2*x^2 + 1))/(a*b*c^3*x^2 + sqrt(c^2*x^2 + 1)*a*b*c^2*
x + a*b*c + (b^2*c^3*x^2 + sqrt(c^2*x^2 + 1)*b^2*c^2*x + b^2*c)*log(c*x + sqrt(c^2*x^2 + 1))) + integrate((3*(
c^2*x^2 + 1)^(3/2)*c^3*x^3 + (6*c^4*x^4 + 5*c^2*x^2 + 1)*(c^2*x^2 + 1) + (3*c^5*x^5 + 5*c^3*x^3 + 2*c*x)*sqrt(
c^2*x^2 + 1))/(a*b*c^5*x^4 + (c^2*x^2 + 1)*a*b*c^3*x^2 + 2*a*b*c^3*x^2 + a*b*c + (b^2*c^5*x^4 + (c^2*x^2 + 1)*
b^2*c^3*x^2 + 2*b^2*c^3*x^2 + b^2*c + 2*(b^2*c^4*x^3 + b^2*c^2*x)*sqrt(c^2*x^2 + 1))*log(c*x + sqrt(c^2*x^2 +
1)) + 2*(a*b*c^4*x^3 + a*b*c^2*x)*sqrt(c^2*x^2 + 1)), x)

Giac [F]

\[ \int \frac {x \sqrt {1+c^2 x^2}}{(a+b \text {arcsinh}(c x))^2} \, dx=\int { \frac {\sqrt {c^{2} x^{2} + 1} x}{{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(x*(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x))^2,x, algorithm="giac")

[Out]

integrate(sqrt(c^2*x^2 + 1)*x/(b*arcsinh(c*x) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x \sqrt {1+c^2 x^2}}{(a+b \text {arcsinh}(c x))^2} \, dx=\int \frac {x\,\sqrt {c^2\,x^2+1}}{{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^2} \,d x \]

[In]

int((x*(c^2*x^2 + 1)^(1/2))/(a + b*asinh(c*x))^2,x)

[Out]

int((x*(c^2*x^2 + 1)^(1/2))/(a + b*asinh(c*x))^2, x)